Insights into the Development of the Adult Leydig Cell Lineage from Stem Leydig Cells
نویسندگان
چکیده
Adult Leydig cells (ALCs) are the steroidogenic cells in the testes that produce testosterone. ALCs develop postnatally from a pool of stem cells, referred to as stem Leydig cells (SLCs). SLCs are spindle-shaped cells that lack steroidogenic cell markers, including luteinizing hormone (LH) receptor and 3β-hydroxysteroid dehydrogenase. The commitment of SLCs into the progenitor Leydig cells (PLCs), the first stage in the lineage, requires growth factors, including Dessert Hedgehog (DHH) and platelet-derived growth factor-AA. PLCs are still spindle-shaped, but become steroidogenic and produce mainly androsterone. The next transition in the lineage is from PLC to the immature Leydig cell (ILC). This transition requires LH, DHH, and androgen. ILCs are ovoid cells that are competent for producing a different form of androgen, androstanediol. The final stage in the developmental lineage is ALC. The transition to ALC involves the reduced expression of 5α-reductase 1, a step that is necessary to make the cells to produce testosterone as the final product. The transitions along the Leydig cell lineage are associated with the progressive down-regulation of the proliferative activity, and the up-regulation of steroidogenic capacity, with each step requiring unique regulatory signaling.
منابع مشابه
Autocrine androgen action is essential for Leydig cell maturation and function, and protects against late-onset Leydig cell apoptosis in both mice and men
Leydig cell number and function decline as men age, and low testosterone is associated with all "Western" cardio-metabolic disorders. However, whether perturbed androgen action within the adult Leydig cell lineage predisposes individuals to this late-onset degeneration remains unknown. To address this, we generated a novel mouse model in which androgen receptor (AR) is ablated from ∼75% of adul...
متن کاملDeletion of the Igf1 gene: suppressive effects on adult Leydig cell development.
Deletion of the insulin-like growth factor 1 (Igf1) gene was shown in previous studies to result in reduced numbers of Leydig cells in the testes of 35-day-old mice, and in reduced circulating testosterone levels. In the current study, we asked whether deletion of the Igf1 gene affects the number, proliferation, and/or steroidogenic function of some or all of the precursor cell types in the dev...
متن کاملTestosterone levels influence mouse fetal Leydig cell progenitors through notch signaling.
Leydig cells are the steroidogenic lineage of the mammalian testis that produces testosterone, a key hormone required throughout male fetal and adult life for virilization and spermatogenesis. Both fetal and adult Leydig cells arise from a progenitor population in the testis interstitium but are thought to be lineage-independent of one another. Genetic evidence indicates that Notch signaling is...
متن کاملMapping lineage progression of somatic progenitor cells in the mouse fetal testis.
Testis morphogenesis is a highly orchestrated process involving lineage determination of male germ cells and somatic cell types. Although the origin and differentiation of germ cells are known, the developmental course specific for each somatic cell lineage has not been clearly defined. Here, we construct a comprehensive map of somatic cell lineage progression in the mouse testis. Both supporti...
متن کاملTransplanted human p75-positive stem Leydig cells replace disrupted Leydig cells for testosterone production
Previous studies have demonstrated that rodent stem Leydig cell (SLC) transplantation can partially restore testosterone production in Leydig cell (LC)-disrupted or senescent animal models, which provides a promising approach for the treatment of hypogonadism. Here, we isolated human SLCs prospectively and explored the potential therapeutic benefits of human SLC transplantation for hypogonadism...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017